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System developers have discovered that many, if not 

most, contemporary applications require a finely tuned 

combination of high-speed software processing and 

real-time hardware performance. In other words, high-

performance is not the equivalent of real-time performance. 

In fact, they both have their own unique and often mutually 

exclusive set of requirements which prevents either one 

from performing the role of the other very well.   

For example, high-performance processors like Arm® Cortex®-A cores have an entirely 

different set of resources and processing capabilities than those of real-time processing 

cores, like the Programmable Real-Time Unit (PRU) co-processor in TI’s Sitara processors.  

The capabilities that make an Arm core so powerful at processing software could also impede 

its real-time determinism and predictability. And, in many of today’s most sophisticated 

applications, real-time capabilities are just as critical as high-performance, if not more so.

Real-time requirements 

Outside of the data center, many systems need the 

low-latency predictability of real-time processing 

in one way or another. In fact, even many general-

purpose systems that require a high-level operating 

system (HLOS) often have a real-time component 

or subsystem, such as communication protocol 

processing, audio processing, lighting control, 

sensor monitoring, factory or home automation, 

motor control and others.

In these types of systems, a general-purpose 

processor (GPP), no matter how high its 

performance, cannot deliver the guaranteed 

response time within strict time constraints that 

typify real-time applications and subsystems. Many 

of the features of a GPP like instruction pipelines 

and memory and interconnect architectures which 

make it so effective running a HLOS (Figure 1) 

will often become counter-productive in real-time 

applications. The typical architecture surrounding a 

GPP core on a system-on-a-chip (SoC) will include 

several layers of memory, which may be internal to 

Figure 1. A typical Cortex-A-based SoC general-purpose processing 
architecture.
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the processing core or external, as well as shared 

memory or dedicated to one core. Moreover, the 

usual SoC architecture will also include several 

layers of interconnects which link the various on-

chip modules, peripherals and eventually lead off the 

chip via specialized or general-purpose input/output 

(GPIO) pins. All of these facilities and structure can 

get in the way of real-time processing.

The architecture surrounding a GPP cannot provide 

the predictable low-latency response times that 

must be guaranteed in a real-time application. 

Accessing data on any of the various levels of 

memory and communicating over any or all of the 

several layers of interconnects will add to the core’s 

response time and ensure the unpredictability of 

the response. The processor’s response time to 

an incoming time-sensitive interrupt from a sensor, 

for example, will vary according to a number of 

factors, such as where the needed data is stored, 

how many layers of interconnects must be traversed 

to access or store data, the processing load 

currently executing on the GPP core and others. 

One experiment on a certain GPP architecture 

showed that a simple toggle on a GPIO pin could 

take as much as 200 nanoseconds (ns) whereas 

the equivalent toggle on a real-time processor with 

direct GPIO pin access would have a response time 

of five ns, or forty times faster. In addition to the 

often slower response typical of GPP processors, 

the actual response time is usually unpredictable. 

In other words, the response time for a GPP to 

handle a real-time event will likely vary each time 

the event occurs.

To overcome the real-time limitations of GPP cores, 

certain capabilities such as real-time co-processors 

are often integrated into an SoC architecture. In the 

example below (Figure 2), the Texas Instruments 

(TI) Programmable Real-Time Units (PRU) form the 

basis for a real-time subsystem on processors. 

Such an architecture gives the SoC direct and fast 

access to the outside world since each PRU has 

its own single-cycle I/O. Additionally, local memory 

and peripherals dedicated to each real-time engine 

means that each unit is able to guarantee low-

latency responsiveness. Plus an incoming interrupt 

has direct access to a real-time processing engine 

without encountering the delays caused by crossing 

several layers of interconnects and memory.
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Figure 2. A general-purpose core supplemented with real-time co-processors.
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Programmable Real-Time Unit (PRU) 

The PRU (Figure 3) which is deployed along with 

Arm cores in the Sitara AM335x, AM437x, AM57x, 

66AK2Gx, and AM6x(1) processors fulfills the role of a 

low-latency, deterministic real-time subsystem. Each 

PRU subsystem is made up of two 200-MHz real-

time cores (or PRUs), each with a five nanosecond (ns) 

cycle time per instruction (the PRUs on some devices 

can run up to 225 or 250-MHz). Since the real-time 

cores are not equipped with an instruction pipeline, 

single-cycle instruction execution is ensured. The 

PRU’s small, deterministic instruction set with multiple 

bit-manipulation instructions is easy to learn and use.

Shared memory as well as instruction and data 

memory dedicated to each real-time core allows 

for flexible program execution among all of the 

real-time and GPP Arm cores that might make up 

the SoC. One program or task might be better 

performed on one core while another could be 

executed faster when the processing load is 

shared among several PRUs and Arm cores. Direct 

access from the PRU to the Arm cores’ layers 

of interconnects enables either tightly coupled 

execution or independent core operations.

Access to all of the system’s interconnects allows 

a PRU to call on any resource in the system when 

needed for a particular program implementation. In 

addition, each PRU subsystem comes with its own 

set of dedicated peripherals to ensure the unit’s 

responsiveness. These peripherals avoid the data 

traffic on secondary and tertiary interconnects in the 

system by accessing directly the PRU’s real-time 

cores. Several peripherals, such as Management Data 

Input/Output (MDIO) and Media Independent Interface 

(MII), enable real-time Ethernet capabilities. Other PRU 

subsystem peripherals include a UART interface.

Because of the interrupt controller and fast I/O pins 

dedicated to each dual-core PRU, the unit is able 

to closely monitor external events and respond in a 

predictable period of time. Each PRU has its own set 

of up to 30 inputs and 32 outputs that directly access 

external pins on the device package.

The best of both worlds: Combining 
Arm and PRU cores

The Sitara line of multi-core processors features 

escalating combinations of Arm Cortex-A cores 

and PRUs. With this architecture (Figure 4), the 

system designer can select the device with the right 

combination of high, general-purpose processing and 

real-time performance to meet the specific needs of 

the application. Arm cores have all of the resources 

and instruction support expected for high-performance 

operating system execution, either for a HLOS or a 

real-time operating system (RTOS), or both at once.
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Figure 3. The TI Programmable Real-Time Unit (PRU) subsystem.

Figure 4. Base Sitara architecture with Arm cores and PRUs.
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(1) The PRU in the AM6x processors includes 2 additional PRU 
cores (called RTU_PRU), as well as additional features including 
support for gigabit Ethernet.
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At the same time, the five nanosecond cycle time 

of PRU cores as well as their low-latency data 

transfers and high-speed I/O accesses assure 

designers that transfers and data modifications will 

be performed in a predictable period of time. The 

responsive simplicity of a PRU core make it a natural 

fit for bit-banged communication interfaces like the 

Serial Peripheral Interface (SPI), the Inter-IC (I2C) 

bus interface and others, including many industrial 

automation protocols.

Some end equipment architectures incorporate a 

field programmable gate array (FPGA) for real-time 

processing. Unlike the integrated PRU co-processor 

(Figure 4), an FPGA that is external to an Arm-based 

system processor would necessarily increase the bill 

of materials (BOM) costs, require additional board 

space, add complexity to the design and increase 

the power consumption of the system. With a PRU 

solution, system developers also benefit from a 

common software code base which simplifies feature 

upgrades, and multi-protocol processing across 

systems or on the same system. Development of 

successive generations of systems is accelerated by 

simply migrating the code base to the next model in 

the product line.

The Sitara hardware structure in Figure 4 supports 

a software architecture (Figure 5) that tightly 

couples Arm cores and PRUs to ensure seamless 

and high-speed application processing. Typically, a 

Linux™ kernel running on an Arm core would include 

RemoteProc and rpmsg kernel drivers for the PRU 

subsystem. The RemoteProc is the basic control 

mechanism, allowing the Arm core to load PRU 

firmware, enabling PRU processing and other 

functions. Through the rpmsg driver user space 

applications and the PRU can pass messages 

(buffers) back and forth.

Applications  

The simple implementation of a PRU combined 

with its full complement of resources make it a 

versatile processing engine for a wide range of real-

time tasks, subsystems and application modules. 

Designers have also taken advantage of the PRU 

to deploy straight forward subsystems like stepper 

motor control units, bit-banging communications 

processors and sensor interfaces to the more 

complex tasks such as camera and LCD display 

interfaces, smart card processing and even very 

complex applications like Ethernet industrial 

automation protocol processing (Figure 6).
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Figure 5. Sitara Arm/PRU software architecture.



The PRU is optimized for low latency and no jitter 

in the real-time execution and is able to process 

the MAC layer functionality of Industrial Ethernet 

standards. For example, since PRU-ICSS can 

support multiple protocols, it enables devices like 

the AMIC110 SOC to seamlessly bridge legacy 

motor drive designs by adding support for Industrial 

Ethernet such as EtherCAT, PROFINET, Sercos III, 

Ethernet/IP and PowerLink. 

One of the more interesting applications of the PRU 

involves a 3D printer (Figure 7). In this case, designers 

took advantage of the BeagleBone development 

board with a Sitara AM335x processor featuring an 

Arm Cortex-A8 core running Linux, the user interface 

and model processing while the PRU performed the 

real-time control of five stepper motors. A shared 

region of memory was reserved for communications 

between the Arm core and the PRU.

Conclusions  

In today’s complex application world even the 

most straight forward general-purpose systems 

will frequently need the predictability, determinism 

and low-latency responsiveness that only real-

time processing can deliver. Teaming the PRU 

with high-performance Arm Cortex-A cores in the 

Sitara line of processors provides the best of both 

worlds. By offering the best of general-purpose and 

real-time processor elements in a single package, 

end equipment is optimized for cost and power 

consumption, yet flexible for feature upgrades through 

efficient reprogramming. 
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Figure 7. Sitara AM335x with Arm Cortex-A8 core and PRU running 
a 3D printer.

Figure 6. Factory automated systems with AMIC110.
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